Skip to contents

Summarizes the efficacy and futility bounds for each analysis.

Usage

gs_bound_summary(
  x,
  digits = 4,
  ddigits = 2,
  tdigits = 0,
  timename = "Month",
  alpha = NULL
)

Arguments

x

Design object.

digits

Number of digits past the decimal to be printed in the body of the table.

ddigits

Number of digits past the decimal to be printed for the natural parameter delta.

tdigits

Number of digits past the decimal point to be shown for estimated timing of each analysis.

timename

Text string indicating time unit.

alpha

Vector of alpha values to compute additional efficacy columns.

Value

A data frame

Examples

library(gsDesign2)

x <- gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
gs_bound_summary(x)
#>       Analysis                Value Efficacy Futility
#> 1    IA 1: 31%                    Z   3.8728  -1.6993
#> 2       N: 439          p (1-sided)   0.0001   0.9554
#> 3   Events: 99         ~HR at bound   0.4600   1.4060
#> 4    Month: 12     P(Cross) if HR=1   0.0001   0.0446
#> 5              P(Cross) if AHR=0.81   0.0025   0.0032
#> 6    IA 2: 77%                    Z   2.3100   1.0889
#> 7       N: 527          p (1-sided)   0.0104   0.1381
#> 8  Events: 248         ~HR at bound   0.7455   0.8707
#> 9    Month: 25     P(Cross) if HR=1   0.0105   0.8620
#> 10             P(Cross) if AHR=0.71   0.6348   0.0599
#> 11       Final                    Z   2.0161   2.0143
#> 12      N: 527          p (1-sided)   0.0219   0.0220
#> 13 Events: 323         ~HR at bound   0.7990   0.7992
#> 14   Month: 36     P(Cross) if HR=1   0.0243   0.9756
#> 15             P(Cross) if AHR=0.68   0.9000   0.1001

x <- gs_design_wlr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
gs_bound_summary(x)
#>       Analysis                 Value Efficacy Futility
#> 1    IA 1: 25%                     Z   4.2955  -2.0871
#> 2       N: 436           p (1-sided)   0.0000   0.9816
#> 3   Events: 99          ~HR at bound   0.4213   1.5219
#> 4    Month: 12      P(Cross) if HR=1   0.0000   0.0184
#> 5              P(Cross) if wAHR=0.81   0.0004   0.0012
#> 6    IA 2: 76%                     Z   2.3156   1.1034
#> 7       N: 523           p (1-sided)   0.0103   0.1349
#> 8  Events: 246          ~HR at bound   0.7442   0.8687
#> 9    Month: 25      P(Cross) if HR=1   0.0103   0.8651
#> 10             P(Cross) if wAHR=0.71   0.6323   0.0610
#> 11       Final                     Z   2.0151   2.0151
#> 12      N: 523           p (1-sided)   0.0219   0.0219
#> 13 Events: 321          ~HR at bound   0.7985   0.7985
#> 14   Month: 36      P(Cross) if HR=1   0.0242   0.9758
#> 15             P(Cross) if wAHR=0.68   0.9000   0.1000

# Report multiple efficacy bounds (only supported for AHR designs)
x <- gs_design_ahr(analysis_time = 1:3*12, alpha = 0.0125)
gs_bound_summary(x, alpha = c(0.025, 0.05))
#>       Analysis                Value α=0.0125 α=0.025 α=0.05 Futility
#> 1    IA 1: 31%                    Z   4.3506  3.8728 3.3437  -1.6192
#> 2       N: 509          p (1-sided)   0.0000  0.0001 0.0004   0.9473
#> 3  Events: 115         ~HR at bound   0.4449  0.4863 0.5366   1.3518
#> 4    Month: 12     P(Cross) if HR=1   0.0000  0.0001 0.0004   0.0527
#> 5              P(Cross) if AHR=0.81   0.0007  0.0032 0.0139   0.0032
#> 6    IA 2: 74%                    Z   2.6778  2.3579 2.0022   1.1590
#> 7       N: 611          p (1-sided)   0.0037  0.0092 0.0226   0.1232
#> 8  Events: 278         ~HR at bound   0.7251  0.7535 0.7863   0.8701
#> 9    Month: 24     P(Cross) if HR=1   0.0037  0.0092 0.0228   0.8768
#> 10             P(Cross) if AHR=0.72   0.5336  0.6571 0.7770   0.0556
#> 11       Final                    Z   2.2781  2.0096 1.7134   2.2775
#> 12      N: 611          p (1-sided)   0.0114  0.0222 0.0433   0.0114
#> 13 Events: 375         ~HR at bound   0.7903  0.8125 0.8378   0.7903
#> 14   Month: 36     P(Cross) if HR=1   0.0122  0.0237 0.0445   0.9878
#> 15             P(Cross) if AHR=0.68   0.9000  0.9252 0.9390   0.1001