Group sequential design power of binary outcome measuring in risk difference
Source:R/gs_power_rd.R
gs_power_rd.Rd
Group sequential design power of binary outcome measuring in risk difference
Usage
gs_power_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
n = tibble::tibble(stratum = "All", n = c(40, 50, 60), analysis = 1:3),
rd0 = 0,
ratio = 1,
weight = c("unstratified", "ss", "invar"),
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(0.1), rep(-Inf, 2)),
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
binding = FALSE,
test_upper = TRUE,
test_lower = TRUE,
r = 18,
tol = 1e-06
)
Arguments
- p_c
Rate at the control group.
- p_e
Rate at the experimental group.
- n
Sample size.
- rd0
Treatment effect under super-superiority designs, the default is 0.
- ratio
Experimental:control randomization ratio.
- weight
Weighting method, can be
"unstratified"
,"ss"
, or"invar"
.- upper
Function to compute upper bound.
- lower
Function to compare lower bound.
- upar
Parameters passed to
upper
.- lpar
Parameters passed to
lower
.- info_scale
Information scale for calculation. Options are:
"h0_h1_info"
(default): variance under both null and alternative hypotheses is used."h0_info"
: variance under null hypothesis is used."h1_info"
: variance under alternative hypothesis is used.
- binding
Indicator of whether futility bound is binding; default of
FALSE
is recommended.- test_upper
Indicator of which analyses should include an upper (efficacy) bound; single value of
TRUE
(default) indicates all analyses; otherwise, a logical vector of the same length asinfo
should indicate which analyses will have an efficacy bound.- test_lower
Indicator of which analyses should include a lower bound; single value of
TRUE
(default) indicates all analyses; single valueFALSE
indicated no lower bound; otherwise, a logical vector of the same length asinfo
should indicate which analyses will have a lower bound.- r
Integer value controlling grid for numerical integration as in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger number of grid points and greater accuracy. Normally,
r
will not be changed by the user.- tol
Tolerance parameter for boundary convergence (on Z-scale).
Examples
# Example 1 ----
library(gsDesign)
# unstratified case with H0: rd0 = 0
gs_power_rd(
p_c = tibble::tibble(
stratum = "All",
rate = .2
),
p_e = tibble::tibble(
stratum = "All",
rate = .15
),
n = tibble::tibble(
stratum = "All",
n = c(20, 40, 60),
analysis = 1:3
),
rd0 = 0,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000309 0.000104 3.71 0.629
#> 2 2 upper 0.0182 0.00605 2.51 0.301
#> 3 3 upper 0.0728 0.0250 1.99 0.195
#> 4 1 lower 0.0571 0.100 -1.28 -0.217
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 20 0.05 0 0.05 0 34.8 34.6 0.333 0.333
#> 2 2 40 0.05 0 0.05 0 69.6 69.3 0.667 0.667
#> 3 3 60 0.05 0 0.05 0 104. 104. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# Example 2 ----
# unstratified case with H0: rd0 != 0
gs_power_rd(
p_c = tibble::tibble(
stratum = "All",
rate = .2
),
p_e = tibble::tibble(
stratum = "All",
rate = .15
),
n = tibble::tibble(
stratum = "All",
n = c(20, 40, 60),
analysis = 1:3
),
rd0 = 0.005,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000309 0.000116 3.71 0.571
#> 2 2 upper 0.0182 0.00680 2.51 0.276
#> 3 3 upper 0.0728 0.0281 1.99 0.181
#> 4 1 lower 0.0571 0.0949 -1.28 -0.191
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 20 0.05 0.005 0.05 0.005 34.8 34.6 0.333 0.333
#> 2 2 40 0.05 0.005 0.05 0.005 69.6 69.3 0.667 0.667
#> 3 3 60 0.05 0.005 0.05 0.005 104. 104. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# use spending function
gs_power_rd(
p_c = tibble::tibble(
stratum = "All",
rate = .2
),
p_e = tibble::tibble(
stratum = "All",
rate = .15
),
n = tibble::tibble(
stratum = "All",
n = c(20, 40, 60),
analysis = 1:3
),
rd0 = 0.005,
ratio = 1,
upper = gs_spending_bound,
lower = gs_b,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000309 0.000116 3.71 0.571
#> 2 2 upper 0.0182 0.00680 2.51 0.276
#> 3 3 upper 0.0728 0.0281 1.99 0.181
#> 4 1 lower 0.0571 0.0949 -1.28 -0.191
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 20 0.05 0.005 0.05 0.005 34.8 34.6 0.333 0.333
#> 2 2 40 0.05 0.005 0.05 0.005 69.6 69.3 0.667 0.667
#> 3 3 60 0.05 0.005 0.05 0.005 104. 104. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# Example 3 ----
# stratified case under sample size weighting and H0: rd0 = 0
gs_power_rd(
p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)
),
p_e = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)
),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)
),
rd0 = 0,
ratio = 1,
weight = "ss",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000437 0.000104 3.71 0.456
#> 2 2 upper 0.0237 0.00604 2.51 0.228
#> 3 3 upper 0.0795 0.0237 1.99 0.166
#> 4 1 lower 0.0470 0.100 -1.28 -0.157
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 38 0.0479 0 0.0479 0 66.3 66.0 0.485 0.485
#> 2 2 66 0.0491 0 0.0491 0 116. 115. 0.846 0.846
#> 3 3 78 0.0492 0 0.0492 0 137. 136. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# Example 4 ----
# stratified case under inverse variance weighting and H0: rd0 = 0
gs_power_rd(
p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)
),
p_e = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)
),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)
),
rd0 = 0,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000443 0.000104 3.71 0.449
#> 2 2 upper 0.0240 0.00604 2.51 0.225
#> 3 3 upper 0.0803 0.0237 1.99 0.164
#> 4 1 lower 0.0467 0.100 -1.28 -0.155
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 38 0.0477 0 0.0477 0 68.2 67.9 0.483 0.483
#> 2 2 66 0.0488 0 0.0488 0 119. 119. 0.845 0.845
#> 3 3 78 0.0489 0 0.0489 0 141. 141. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# Example 5 ----
# stratified case under sample size weighting and H0: rd0 != 0
gs_power_rd(
p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)
),
p_e = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)
),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)
),
rd0 = 0.02,
ratio = 1,
weight = "ss",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000437 0.000194 3.71 0.285
#> 2 2 upper 0.0237 0.0109 2.51 0.153
#> 3 3 upper 0.0795 0.0401 1.99 0.117
#> 4 1 lower 0.0470 0.0744 -1.28 -0.0717
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 38 0.0479 0.02 0.0479 0.02 66.3 66.0 0.485 0.485
#> 2 2 66 0.0491 0.02 0.0491 0.02 116. 115. 0.846 0.846
#> 3 3 78 0.0492 0.02 0.0492 0.02 137. 136. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"
# Example 6 ----
# stratified case under inverse variance weighting and H0: rd0 != 0
gs_power_rd(
p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)
),
p_e = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)
),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)
),
rd0 = 0.03,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $bound
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~risk difference at bound`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.000443 0.000267 3.71 0.197
#> 2 2 upper 0.0240 0.0145 2.51 0.113
#> 3 3 upper 0.0803 0.0518 1.99 0.0906
#> 4 1 lower 0.0467 0.0632 -1.28 -0.0275
#> # ℹ 1 more variable: `nominal p` <dbl>
#>
#> $analysis
#> # A tibble: 3 × 10
#> analysis n rd rd0 theta1 theta0 info info0 info_frac info_frac0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 38 0.0477 0.03 0.0477 0.03 68.2 67.9 0.483 0.483
#> 2 2 66 0.0488 0.03 0.0488 0.03 119. 119. 0.845 0.845
#> 3 3 78 0.0489 0.03 0.0489 0.03 141. 141. 1 1
#>
#> attr(,"class")
#> [1] "non_binding" "rd" "gs_design" "list"