Skip to contents

Computes one bound at a time based on spending under given distributional assumptions. While user specifies gs_spending_bound() for use with other functions, it is not intended for use on its own. Most important user specifications are made through a list provided to functions using gs_spending_bound(). Function uses numerical integration and Newton-Raphson iteration to derive an individual bound for a group sequential design that satisfies a targeted boundary crossing probability. Algorithm is a simple extension of that in Chapter 19 of Jennison and Turnbull (2000).

Usage

gs_spending_bound(
  k = 1,
  par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL,
    max_info = NULL),
  hgm1 = NULL,
  theta = 0.1,
  info = 1:3,
  efficacy = TRUE,
  test_bound = TRUE,
  r = 18,
  tol = 1e-06
)

Arguments

k

Analysis for which bound is to be computed.

par

A list with the following items:

  • sf (class spending function).

  • total_spend (total spend).

  • param (any parameters needed by the spending function sf()).

  • timing (a vector containing values at which spending function is to be evaluated or NULL if information-based spending is used).

  • max_info (when timing is NULL, this can be input as positive number to be used with info for information fraction at each analysis).

hgm1

Subdensity grid from h1() (k=2) or hupdate() (k>2) for analysis k-1; if k=1, this is not used and may be NULL.

theta

Natural parameter used for lower bound only spending; represents average drift at each time of analysis at least up to analysis k; upper bound spending is always set under null hypothesis (theta = 0).

info

Statistical information at all analyses, at least up to analysis k.

efficacy

TRUE (default) for efficacy bound, FALSE otherwise.

test_bound

A logical vector of the same length as info should indicate which analyses will have a bound.

r

Integer value controlling grid for numerical integration as in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger number of grid points and greater accuracy. Normally r will not be changed by the user.

tol

Tolerance parameter for convergence (on Z-scale).

Value

Returns a numeric bound (possibly infinite) or, upon failure, generates an error message.

Specification

The contents of this section are shown in PDF user manual only.

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical Trials. Boca Raton: Chapman and Hall.

Author

Keaven Anderson keaven_anderson@merck.com

Examples

gs_power_ahr(
  analysis_time = c(12, 24, 36),
  event = c(30, 40, 50),
  binding = TRUE,
  upper = gs_spending_bound,
  upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
  lower = gs_spending_bound,
  lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 3 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All            2     3
#> 2 All            2     6
#> 3 All           10     9
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            3    0.0770        0.001   0.9
#> 2 All          100    0.0385        0.001   0.6
#> 
#> $input$event
#> [1] 30 40 50
#> 
#> $input$analysis_time
#> [1] 12 24 36
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$upar$total_spend
#> [1] 0.025
#> 
#> $input$upar$param
#> NULL
#> 
#> $input$upar$timing
#> NULL
#> 
#> 
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$lpar$total_spend
#> [1] 0.025
#> 
#> $input$lpar$param
#> NULL
#> 
#> $input$lpar$timing
#> NULL
#> 
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$binding
#> [1] TRUE
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 3 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All            2     3
#> 2 All            2     6
#> 3 All           10     9
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            3    0.0770        0.001   0.9
#> 2 All          100    0.0385        0.001   0.6
#> 
#> $bound
#> # A tibble: 6 × 7
#>   analysis bound probability probability0      z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl>  <dbl>          <dbl>       <dbl>
#> 1        1 upper    0.00706      0.000867  3.13           0.316    0.000867
#> 2        1 lower    0.000935     0.00658  -2.48           2.49     0.993   
#> 3        2 upper    0.115        0.00921   2.37           0.505    0.00892 
#> 4        2 lower    0.00912      0.113    -1.21           1.42     0.888   
#> 5        3 upper    0.324        0.0250    2.01           0.607    0.0222  
#> 6        3 lower    0.0251       0.323    -0.474          1.12     0.682   
#> 
#> $analysis
#>   analysis     time   n    event       ahr     theta      info    info0
#> 1        1 14.90817 108 30.00008 0.7865726 0.2400702  7.373433  7.50002
#> 2        2 24.00000 108 49.06966 0.7151566 0.3352538 11.999266 12.26741
#> 3        3 36.00000 108 66.23948 0.6833395 0.3807634 16.267921 16.55987
#>   info_frac info_frac0
#> 1 0.4532499  0.4529033
#> 2 0.7376029  0.7407917
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "ahr"       "gs_design" "list"