Calculate likelihood values and other summary output for the following three state models structures: partitioned survival, clock forward state transition, and clock reset state transition. The function requires appropriately formatted patient-level data, a set of fitted survival regressions, and the time cut-off (if two-piece modeling is used).
Arguments
- ptdata
Dataset of patient level data. Must be a tibble with columns named:
ptid
: patient identifierpfs.durn
: duration of PFS from baselinepfs.flag
: event flag for PFS (=1 if progression or death occurred, 0 for censoring)os.durn
: duration of OS from baselineos.flag
: event flag for OS (=1 if death occurred, 0 for censoring)ttp.durn
: duration of TTP from baseline (usually should be equal to pfs.durn)ttp.flag
: event flag for TTP (=1 if progression occurred, 0 for censoring).
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS.
- dpam
List of survival regressions for each endpoint:
pre-progression death (PPD)
time to progression (TTP)
progression-free survival (PFS)
overall survival (OS)
post-progression survival clock forward (PPS-CF) and
post-progression survival clock reset (PPS-CR).
- cuttime
Time cutoff - this is nonzero for two-piece models.
Value
A list of three tibbles:
all
is a tibble of results for all patients:
methname
: the model structure or method.npar
: is the number of parameters used by that method.npts_1
tonpts_4
are the number of patients experiencing outcomes 1-4 respectively (see below), andnpts_tot
the total.ll_1
toll_4
are the log-likelihood values for patients experiencing outcomes 1-4 respectively (see below), andll_tot
the total.valid
is a tibble of the same design asall
but only in patients with valid likelihoods for all 4 methodssum
is a tibble in respect of patients with valid likelihoods for all 4 methods providing:npts
: number of patients contributing results for this method.npar
: number of parameters used by that method.ll
: total log-likelihoodAIC
: Akaike Information Criterion value for this modelBIC
: Bayesian Information Criterion value for this model
The four outcomes are as follows:
(1) refers to patients who remain alive and progression-free during the follow-up;
(2) refers to patients who die without prior progression during the follow-up;
(3) refers to patients who progress and then remain alive for the remaining follow-up, and
(4) refers to patients who progress and die within the follow-up.
Examples
# \donttest{
bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
# Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
calc_likes(bosonc, dpam=params)
#> $all
#> # A tibble: 4 × 12
#> methname npar npts_1 npts_2 npts_3 npts_4 npts_tot ll_1 ll_2 ll_3 ll_4
#> <chr> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 psm_simple 7 72 29 35 68 204 -64.8 -152. -151. NA
#> 2 psm_complex 9 72 29 35 68 204 -64.8 -147. -150. -473.
#> 3 stm_cf 9 72 29 35 68 204 -65.2 -147. -148. -473.
#> 4 stm_cr 10 72 29 35 68 204 -65.2 -147. -148. -470.
#> # ℹ 1 more variable: ll_tot <dbl>
#>
#> $valid
#> # A tibble: 4 × 12
#> methname npar npts_1 npts_2 npts_3 npts_4 npts_tot ll_1 ll_2 ll_3 ll_4
#> <chr> <dbl> <int> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 psm_simple 7 72 29 35 67 203 -64.8 -152. -151. -469.
#> 2 psm_complex 9 72 29 35 67 203 -64.8 -147. -150. -468.
#> 3 stm_cf 9 72 29 35 67 203 -65.2 -147. -148. -468.
#> 4 stm_cr 10 72 29 35 67 203 -65.2 -147. -148. -464.
#> # ℹ 1 more variable: ll_tot <dbl>
#>
#> $sum
#> # A tibble: 4 × 8
#> methname npts npar ll aic bic rank_aic rank_bic
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 psm_simple 203 7 -836. 1685. 1709. 4 4
#> 2 psm_complex 203 9 -830. 1679. 1708. 3 3
#> 3 stm_cf 203 9 -828. 1673. 1703. 2 2
#> 4 stm_cr 203 10 -824. 1668. 1701. 1 1
#>
# }