Derive the post-progression survival (PPS) function under the simple or complex PSM formulation.
Arguments
- totime
Vector of times to which the survival function is calculated
- fromtime
Vector of times from which the survival function is calculated
- ptdata
Patient-level dataset
- dpam
List of fitted survival models for each endpoint
- psmtype
Either "simple" or "complex" PSM formulation
Examples
# \donttest{
bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
# Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
calc_surv_psmpps(totime=1:10,
fromtime=rep(1,10),
ptdata=bosonc,
dpam=params,
psmtype="simple")
#> [1] 1.0000000 0.9995962 0.9833657 0.9541989 0.9190001 0.8807816 0.8411186
#> [8] 0.8009357 0.7607707 0.7209705
# }