Skip to contents

Calculates probability of post progression survival at a given time from progression (vectorized). This probability is from the state transition clock forward model, according to the given statistical distributions and parameters.

Usage

prob_pps_cf(ttptimes, ppstimes, dpam)

Arguments

ttptimes

Time (numeric and vectorized) from progression - not time from baseline.

ppstimes

Time (numeric and vectorized) of progression

dpam

List of survival regressions for model endpoints. This must include post progression survival calculated under the clock forward state transition model.

Value

Vector of the mean probabilities of post-progression survival at each PPS time, averaged over TTP times.

Examples

# \donttest{
bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
# Pick out best distribution according to min AIC
params <- list(
  ppd = find_bestfit(fits$ppd, "aic")$fit,
  ttp = find_bestfit(fits$ttp, "aic")$fit,
  pfs = find_bestfit(fits$pfs, "aic")$fit,
  os = find_bestfit(fits$os, "aic")$fit,
  pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
  pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pps_cf(0:100, 0:100, params)
#>   [1] 1.0000000000 0.9269277329 0.8595239740 0.7969376513 0.7387652556
#>   [6] 0.6846798786 0.6343928456 0.5876418128 0.5441853505 0.5037998452
#>  [11] 0.4662774338 0.4314244718 0.3990603131 0.3690162875 0.3411348163
#>  [16] 0.3152686285 0.2912800553 0.2690403877 0.2484292861 0.2293342129
#>  [21] 0.2116498123 0.1952774482 0.1801248358 0.1661056875 0.1531393715
#>  [26] 0.1411505858 0.1300690452 0.1198291833 0.1103698686 0.1016341336
#>  [31] 0.0935689188 0.0861248289 0.0792559018 0.0729193903 0.0670755557
#>  [36] 0.0616874726 0.0567208450 0.0521438326 0.0479268878 0.0440426013
#>  [41] 0.0404655582 0.0371722017 0.0341407061 0.0313508565 0.0287839376
#>  [46] 0.0264226280 0.0242509024 0.0222539395 0.0204180363 0.0187305277
#>  [51] 0.0171797114 0.0157547788 0.0144457490 0.0132434086 0.0121392552
#>  [56] 0.0111254450 0.0101947448 0.0093404857 0.0085565206 0.0078371848
#>  [61] 0.0071772589 0.0065719348 0.0060167848 0.0055077315 0.0050410215
#>  [66] 0.0046132003 0.0042210887 0.0038617618 0.0035325292 0.0032309164
#>  [71] 0.0029546483 0.0027016332 0.0024699484 0.0022578272 0.0020636461
#>  [76] 0.0018859137 0.0017232603 0.0015744280 0.0014382617 0.0013137012
#>  [81] 0.0011997733 0.0010955850 0.0010003168 0.0009132171 0.0008335964
#>  [86] 0.0007608223 0.0006943151 0.0006335432 0.0005780195 0.0005272975
#>  [91] 0.0004809679 0.0004386560 0.0004000183 0.0003647404 0.0003325341
#>  [96] 0.0003031359 0.0002763042 0.0002518181 0.0002294753 0.0002090907
#> [101] 0.0001904951
# }