Skip to contents

Survival objects reverse-engineered datasets from published Kaplan-Meier curves. Individual trials are de-identified since the data are only approximations of the actual data. Data are intended to evaluate methods and designs for trials where non-proportional hazards may be anticipated for outcome data.

Usage

data(ex4_belly)

Format

Data frame with 4 variables:

  • id: Sequential numbering of unique identifiers.

  • month: Time-to-event.

  • event: 1 for event, 0 for censored.

  • trt: 1 for experimental, 0 for control.

References

Lin, Ray S., Ji Lin, Satrajit Roychoudhury, Keaven M. Anderson, Tianle Hu, Bo Huang, Larry F Leon, Jason J.Z. Liao, Rong Liu, Xiaodong Luo, Pralay Mukhopadhyay, Rui Qin, Kay Tatsuoka, Xuejing Wang, Yang Wang, Jian Zhu, Tai-Tsang Chen, Renee Iacona & Cross-Pharma Non-proportional Hazards Working Group. 2020. Alternative analysis methods for time to event endpoints under nonproportional hazards: A comparative analysis. Statistics in Biopharmaceutical Research 12(2): 187–198.

Examples

library(survival)

data(ex4_belly)
km1 <- with(ex4_belly, survfit(Surv(month, evntd) ~ trt))
km1
#> Call: survfit(formula = Surv(month, evntd) ~ trt)
#> 
#>         n events median 0.95LCL 0.95UCL
#> trt=0 387    339   5.40    4.61    5.55
#> trt=1 387    327   6.42    5.81    6.91
plot(km1)