
Group sequential design power using weighted log rank test under non-proportional hazards
Source:R/gs_power_wlr.R
gs_power_wlr.Rd
Group sequential design power using weighted log rank test under non-proportional hazards
Usage
gs_power_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),
hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
event = c(30, 40, 50),
analysis_time = NULL,
binding = FALSE,
upper = gs_spending_bound,
lower = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
test_upper = TRUE,
test_lower = TRUE,
ratio = 1,
weight = wlr_weight_fh,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
approx = "asymptotic",
r = 18,
tol = 1e-06,
interval = c(0.01, 1000),
integer = FALSE
)
Arguments
- enroll_rate
Enrollment rates defined by
define_enroll_rate()
.- fail_rate
Failure and dropout rates defined by
define_fail_rate()
.- event
A numerical vector specifying the targeted events at each analysis. See details.
- analysis_time
Targeted calendar timing of analyses. See details.
- binding
Indicator of whether futility bound is binding; default of
FALSE
is recommended.- upper
Function to compute upper bound.
gs_spending_bound()
: alpha-spending efficacy bounds.gs_b()
: fixed efficacy bounds.
- lower
Function to compute lower bound, which can be set up similarly as
upper
. See this vignette.- upar
Parameters passed to
upper
.If
upper = gs_b
, thenupar
is a numerical vector specifying the fixed efficacy bounds per analysis.If
upper = gs_spending_bound
, thenupar
is a list includingsf
for the spending function family.total_spend
for total alpha spend.param
for the parameter of the spending function.timing
specifies spending time if different from information-based spending; see details.
- lpar
Parameters passed to
lower
, which can be set up similarly asupar.
- test_upper
Indicator of which analyses should include an upper (efficacy) bound; single value of
TRUE
(default) indicates all analyses; otherwise, a logical vector of the same length asinfo
should indicate which analyses will have an efficacy bound.- test_lower
Indicator of which analyses should include an lower bound; single value of
TRUE
(default) indicates all analyses; single valueFALSE
indicated no lower bound; otherwise, a logical vector of the same length asinfo
should indicate which analyses will have a lower bound.- ratio
Experimental:Control randomization ratio.
- weight
Weight of weighted log rank test:
"1"
= unweighted."n"
= Gehan-Breslow."sqrtN"
= Tarone-Ware."FH_p[a]_q[b]"
= Fleming-Harrington with p=a and q=b.
- info_scale
Information scale for calculation. Options are:
"h0_h1_info"
(default): variance under both null and alternative hypotheses is used."h0_info"
: variance under null hypothesis is used."h1_info"
: variance under alternative hypothesis is used.
- approx
Approximate estimation method for Z statistics.
"event_driven"
= only work under proportional hazard model with log rank test."asymptotic"
.
- r
Integer value controlling grid for numerical integration as in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger number of grid points and greater accuracy. Normally,
r
will not be changed by the user.- tol
Tolerance parameter for boundary convergence (on Z-scale); normally not changed by the user.
- interval
An interval presumed to include the times at which expected event count is equal to targeted event. Normally, this can be ignored by the user as it is set to
c(.01, 1000)
.- integer
Indicator of whether integer sample size and events are intended. This argument is used when using
to_integer()
.
Examples
library(gsDesign)
library(gsDesign2)
# set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)
# set failure rates
fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001
)
# set the targeted number of events and analysis time
target_events <- c(30, 40, 50)
target_analysisTime <- c(10, 24, 30)
# Example 1 ----
# \donttest{
# fixed bounds and calculate the power for targeted number of events
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL
)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> [1] 30 40 50
#>
#> $input$analysis_time
#> NULL
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> [1] -1.281552 -Inf -Inf
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.00470 0.00381 2.67 0.377 0.00381
#> 2 1 lower 0.0881 0.100 -1.28 1.60 0.9
#> 3 2 upper 0.0182 0.0127 2.29 0.485 0.0110
#> 4 3 upper 0.0439 0.0268 2.03 0.563 0.0211
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 5.893949 245.5812 29.99999 0.9636346 0.03704308 3.683799 3.684201
#> 2 2 6.900922 287.5384 40.00003 0.9373448 0.06470405 5.749119 5.750793
#> 3 3 7.808453 325.3522 50.00000 0.9155821 0.08819527 8.132495 8.136743
#> info_frac info_frac0
#> 1 0.4529728 0.4527857
#> 2 0.7069318 0.7067685
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }
# Example 2 ----
# fixed bounds and calculate the power for targeted analysis time
# \donttest{
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL
)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> NULL
#>
#> $input$analysis_time
#> [1] 10 24 30
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> [1] -1.281552 -Inf -Inf
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.0172 0.00381 2.67 0.546 0.00381
#> 2 1 lower 0.0335 0.100 -1.28 1.34 0.9
#> 3 2 upper 0.622 0.0141 2.29 0.747 0.0110
#> 4 3 upper 0.842 0.0263 2.03 0.789 0.0211
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 10 416.6667 77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2 2 24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3 3 30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#> info_frac info_frac0
#> 1 0.2222803 0.2185712
#> 2 0.8413760 0.8361677
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }
# Example 3 ----
# fixed bounds and calculate the power for targeted analysis time & number of events
# \donttest{
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL
)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> [1] 30 40 50
#>
#> $input$analysis_time
#> [1] 10 24 30
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (par = NULL, k = NULL, ...)
#> {
#> if (is.null(k)) {
#> return(par)
#> }
#> else {
#> return(par[k])
#> }
#> }
#> <bytecode: 0x5632e2badf90>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> [1] -1.281552 -Inf -Inf
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 4 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.0172 0.00381 2.67 0.546 0.00381
#> 2 1 lower 0.0335 0.100 -1.28 1.34 0.9
#> 3 2 upper 0.622 0.0141 2.29 0.747 0.0110
#> 4 3 upper 0.842 0.0263 2.03 0.789 0.0211
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 10 416.6667 77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2 2 24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3 3 30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#> info_frac info_frac0
#> 1 0.2222803 0.2185712
#> 2 0.8413760 0.8361677
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }
# Example 4 ----
# spending bounds and calculate the power for targeted number of events
# \donttest{
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> [1] 30 40 50
#>
#> $input$analysis_time
#> NULL
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$upar$total_spend
#> [1] 0.025
#>
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$lpar$total_spend
#> [1] 0.2
#>
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 6 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.00110 0.000865 3.13 0.319 0.000865
#> 2 1 lower 0.0569 0.0655 -1.51 1.74 0.935
#> 3 2 upper 0.0115 0.00767 2.44 0.463 0.00739
#> 4 2 lower 0.127 0.159 -1.06 1.40 0.857
#> 5 3 upper 0.0427 0.0250 2.00 0.568 0.0226
#> 6 3 lower 0.200 0.266 -0.738 1.23 0.770
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 5.893949 245.5812 29.99999 0.9636346 0.03704308 3.683799 3.684201
#> 2 2 6.900922 287.5384 40.00003 0.9373448 0.06470405 5.749119 5.750793
#> 3 3 7.808453 325.3522 50.00000 0.9155821 0.08819527 8.132495 8.136743
#> info_frac info_frac0
#> 1 0.4529728 0.4527857
#> 2 0.7069318 0.7067685
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }
# Example 5 ----
# spending bounds and calculate the power for targeted analysis time
# \donttest{
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> NULL
#>
#> $input$analysis_time
#> [1] 10 24 30
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$upar$total_spend
#> [1] 0.025
#>
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$lpar$total_spend
#> [1] 0.2
#>
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 6 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.0000207 0.00000163 4.65 0.348 0.00000163
#> 2 1 lower 0.00659 0.0269 -1.93 1.55 0.973
#> 3 2 upper 0.663 0.0142 2.19 0.756 0.0142
#> 4 2 lower 0.162 0.947 1.62 0.814 0.0527
#> 5 3 upper 0.811 0.0225 2.04 0.789 0.0209
#> 6 3 lower 0.200 0.980 2.13 0.780 0.0165
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 10 416.6667 77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2 2 24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3 3 30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#> info_frac info_frac0
#> 1 0.2222803 0.2185712
#> 2 0.8413760 0.8361677
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }
# Example 6 ----
# spending bounds and calculate the power for targeted analysis time & number of events
# \donttest{
gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $input$fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $input$event
#> [1] 30 40 50
#>
#> $input$analysis_time
#> [1] 10 24 30
#>
#> $input$binding
#> [1] FALSE
#>
#> $input$ratio
#> [1] 1
#>
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$upar$total_spend
#> [1] 0.025
#>
#>
#> $input$test_upper
#> [1] TRUE
#>
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025,
#> param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL,
#> theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE,
#> r = 18, tol = 1e-06)
#> {
#> if (length(test_bound) == 1 && k > 1) {
#> test_bound <- rep(test_bound, k)
#> }
#> if (!is.null(par$timing)) {
#> timing <- par$timing
#> }
#> else {
#> if (is.null(par$max_info)) {
#> timing <- info/max(info)
#> }
#> else {
#> timing <- info/par$max_info
#> }
#> }
#> if (!is.function(sf <- par$sf))
#> sf <- tryCatch(match.fun(sf), error = function(e) {
#> getExportedValue("gsDesign", sf)
#> })
#> spend <- sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#> old_spend <- 0
#> for (i in 1:k) {
#> if (test_bound[i]) {
#> xx <- spend[i] - old_spend
#> old_spend <- spend[i]
#> spend[i] <- xx
#> }
#> else {
#> spend[i] <- 0
#> }
#> }
#> spend <- spend[k]
#> if (!efficacy) {
#> if (spend <= 0) {
#> return(-Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#> if (k == 1) {
#> return(a)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> adelta <- 1
#> j <- 0
#> while (abs(adelta) > tol) {
#> hg <- hupdate(theta = theta[k], info = info[k], a = -Inf,
#> b = a, thetam1 = theta[k - 1], im1 = info[k -
#> 1], gm1 = hgm1, r = r)
#> i <- length(hg$h)
#> pik <- sum(hg$h)
#> adelta <- spend - pik
#> dplo <- hg$h[i]/hg$w[i]
#> if (adelta > dplo) {
#> adelta <- 1
#> }
#> else if (adelta < -dplo) {
#> adelta <- -1
#> }
#> else {
#> adelta <- adelta/dplo
#> }
#> a <- a + adelta
#> if (a > extreme_high) {
#> a <- extreme_high
#> }
#> else if (a < extreme_low) {
#> a <- extreme_low
#> }
#> if (abs(adelta) < tol) {
#> return(a)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> else {
#> if (spend <= 0) {
#> return(Inf)
#> }
#> if (length(theta) == 1)
#> theta <- rep(theta, length(info))
#> b <- qnorm(spend, lower.tail = FALSE)
#> if (k == 1) {
#> return(b)
#> }
#> mu <- theta[k] * sqrt(info[k])
#> extreme_low <- mu - 3 - 4 * log(r)
#> extreme_high <- mu + 3 + 4 * log(r)
#> bdelta <- 1
#> j <- 1
#> while (abs(bdelta) > tol) {
#> hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf,
#> thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#> pik <- sum(hg$h)
#> bdelta <- spend - pik
#> dpikdb <- hg$h[1]/hg$w[1]
#> if (bdelta > dpikdb) {
#> bdelta <- 1
#> }
#> else if (bdelta < -dpikdb) {
#> bdelta <- -1
#> }
#> else {
#> bdelta <- bdelta/dpikdb
#> }
#> b <- b - bdelta
#> if (b > extreme_high) {
#> b <- extreme_high
#> }
#> else if (b < extreme_low) {
#> b <- extreme_low
#> }
#> if (abs(bdelta) < tol) {
#> return(b)
#> }
#> j <- j + 1
#> if (j > 20) {
#> stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis",
#> k, " !"))
#> }
#> }
#> }
#> }
#> <bytecode: 0x5632e2bb34a0>
#> <environment: namespace:gsDesign2>
#>
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL)
#> {
#> checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#> checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#> if (is.null(param) || param < 0.005 || param > 20)
#> param <- 1
#> checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#> t[t > 1] <- 1
#> if (param == 1) {
#> rho <- 1
#> txt <- "Lan-DeMets O'Brien-Fleming approximation"
#> parname <- "none"
#> }
#> else {
#> rho <- param
#> txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#> parname <- "rho"
#> }
#> z <- -qnorm(alpha/2)
#> x <- list(name = txt, param = param, parname = parname, sf = sfLDOF,
#> spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#> class(x) <- "spendfn"
#> x
#> }
#> <bytecode: 0x5632e3aef258>
#> <environment: namespace:gsDesign>
#>
#> $input$lpar$total_spend
#> [1] 0.2
#>
#>
#> $input$test_lower
#> [1] TRUE
#>
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
#> {
#> n <- arm0$size + arm1$size
#> p1 <- arm1$size/n
#> p0 <- 1 - p1
#> if (!is.null(tau)) {
#> if (tau > 0) {
#> x <- pmin(x, tau)
#> }
#> }
#> esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x,
#> arm1)
#> (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x5632deb8b128>
#> <environment: namespace:gsDesign2>
#>
#> $input$info_scale
#> [1] "h0_h1_info"
#>
#> $input$approx
#> [1] "asymptotic"
#>
#> $input$r
#> [1] 18
#>
#> $input$tol
#> [1] 1e-06
#>
#>
#> $enroll_rate
#> # A tibble: 1 × 3
#> stratum duration rate
#> <chr> <dbl> <dbl>
#> 1 All 12 41.7
#>
#> $fail_rate
#> # A tibble: 2 × 5
#> stratum duration fail_rate dropout_rate hr
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 All 4 0.0462 0.001 1
#> 2 All 100 0.0462 0.001 0.6
#>
#> $bounds
#> # A tibble: 6 × 7
#> analysis bound probability probability0 z `~hr at bound` `nominal p`
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 upper 0.0000207 0.00000163 4.65 0.348 0.00000163
#> 2 1 lower 0.00659 0.0269 -1.93 1.55 0.973
#> 3 2 upper 0.663 0.0142 2.19 0.756 0.0142
#> 4 2 lower 0.162 0.947 1.62 0.814 0.0527
#> 5 3 upper 0.811 0.0225 2.04 0.789 0.0209
#> 6 3 lower 0.200 0.980 2.13 0.780 0.0165
#>
#> $analysis
#> analysis time n event ahr theta info info0
#> 1 1 10 416.6667 77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2 2 24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3 3 30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#> info_frac info_frac0
#> 1 0.2222803 0.2185712
#> 2 0.8413760 0.8361677
#> 3 1.0000000 1.0000000
#>
#> attr(,"class")
#> [1] "non_binding" "wlr" "gs_design" "list"
# }