Skip to contents

Group sequential design power using weighted log rank test under non-proportional hazards

Usage

gs_power_wlr(
  enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
  fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),
    hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
  event = c(30, 40, 50),
  analysis_time = NULL,
  binding = FALSE,
  upper = gs_spending_bound,
  lower = gs_spending_bound,
  upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
  lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
  test_upper = TRUE,
  test_lower = TRUE,
  ratio = 1,
  weight = wlr_weight_fh,
  info_scale = c("h0_h1_info", "h0_info", "h1_info"),
  approx = "asymptotic",
  r = 18,
  tol = 1e-06,
  interval = c(0.01, 1000),
  integer = FALSE
)

Arguments

enroll_rate

Enrollment rates.

fail_rate

Failure and dropout rates.

event

Targeted event at each analysis.

analysis_time

Minimum time of analysis.

binding

Indicator of whether futility bound is binding; default of FALSE is recommended.

upper

Function to compute upper bound.

lower

Function to compute lower bound.

upar

Parameters passed to upper.

lpar

Parameters passed to lower.

test_upper

Indicator of which analyses should include an upper (efficacy) bound; single value of TRUE (default) indicates all analyses; otherwise, a logical vector of the same length as info should indicate which analyses will have an efficacy bound.

test_lower

Indicator of which analyses should include an lower bound; single value of TRUE (default) indicates all analyses; single value FALSE indicated no lower bound; otherwise, a logical vector of the same length as info should indicate which analyses will have a lower bound.

ratio

Experimental:Control randomization ratio (not yet implemented).

weight

Weight of weighted log rank test:

  • "1" = unweighted.

  • "n" = Gehan-Breslow.

  • "sqrtN" = Tarone-Ware.

  • "FH_p[a]_q[b]" = Fleming-Harrington with p=a and q=b.

info_scale

Information scale for calculation. Options are:

  • "h0_h1_info" (default): variance under both null and alternative hypotheses is used.

  • "h0_info": variance under null hypothesis is used.

  • "h1_info": variance under alternative hypothesis is used.

approx

Approximate estimation method for Z statistics.

  • "event_driven" = only work under proportional hazard model with log rank test.

  • "asymptotic".

r

Integer value controlling grid for numerical integration as in Jennison and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger number of grid points and greater accuracy. Normally, r will not be changed by the user.

tol

Tolerance parameter for boundary convergence (on Z-scale).

interval

An interval that is presumed to include the time at which expected event count is equal to targeted event.

integer

Logical value integer whether it is an integer design (i.e., integer sample size and events) or not. This argument is commonly used when creating integer design via to_integer().

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

The contents of this section are shown in PDF user manual only.

Examples

library(gsDesign)
library(gsDesign2)

# set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)

# set failure rates
fail_rate <- define_fail_rate(
  duration = c(4, 100),
  fail_rate = log(2) / 15, # median survival 15 month
  hr = c(1, .6),
  dropout_rate = 0.001
)

# set the targeted number of events and analysis time
target_events <- c(30, 40, 50)
target_analysisTime <- c(10, 24, 30)

# Example 1 ----
# \donttest{
# fixed bounds and calculate the power for targeted number of events
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = target_events,
  analysis_time = NULL,
  upper = gs_b,
  upar = gsDesign(
    k = length(target_events),
    test.type = 1,
    n.I = target_events,
    maxn.IPlan = max(target_events),
    sfu = sfLDOF,
    sfupar = NULL
  )$upper$bound,
  lower = gs_b,
  lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> [1] 30 40 50
#> 
#> $input$analysis_time
#> NULL
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> [1] -1.281552      -Inf      -Inf
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 4 × 7
#>   analysis bound probability probability0     z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl> <dbl>          <dbl>       <dbl>
#> 1        1 upper     0.00470      0.00381  2.67          0.377     0.00381
#> 2        1 lower     0.0881       0.100   -1.28          1.60      0.9    
#> 3        2 upper     0.0182       0.0127   2.29          0.485     0.0110 
#> 4        3 upper     0.0439       0.0268   2.03          0.563     0.0211 
#> 
#> $analysis
#>   analysis     time        n    event       ahr      theta     info    info0
#> 1        1 5.893949 245.5812 29.99999 0.9636346 0.03704308 3.683799 3.684201
#> 2        2 6.900922 287.5384 40.00003 0.9373448 0.06470405 5.749119 5.750793
#> 3        3 7.808453 325.3522 50.00000 0.9155821 0.08819527 8.132495 8.136743
#>   info_frac info_frac0
#> 1 0.4529728  0.4527857
#> 2 0.7069318  0.7067685
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }
# Example 2 ----
# fixed bounds and calculate the power for targeted analysis time
# \donttest{
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = NULL,
  analysis_time = target_analysisTime,
  upper = gs_b,
  upar = gsDesign(
    k = length(target_events),
    test.type = 1,
    n.I = target_events,
    maxn.IPlan = max(target_events),
    sfu = sfLDOF,
    sfupar = NULL
  )$upper$bound,
  lower = gs_b,
  lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> NULL
#> 
#> $input$analysis_time
#> [1] 10 24 30
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> [1] -1.281552      -Inf      -Inf
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 4 × 7
#>   analysis bound probability probability0     z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl> <dbl>          <dbl>       <dbl>
#> 1        1 upper      0.0172      0.00381  2.67          0.546     0.00381
#> 2        1 lower      0.0335      0.100   -1.28          1.34      0.9    
#> 3        2 upper      0.622       0.0141   2.29          0.747     0.0110 
#> 4        3 upper      0.842       0.0263   2.03          0.789     0.0211 
#> 
#> $analysis
#>   analysis time        n     event       ahr     theta     info    info0
#> 1        1   10 416.6667  77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2        2   24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3        3   30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#>   info_frac info_frac0
#> 1 0.2222803  0.2185712
#> 2 0.8413760  0.8361677
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }
# Example 3 ----
# fixed bounds and calculate the power for targeted analysis time & number of events
# \donttest{
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = target_events,
  analysis_time = target_analysisTime,
  upper = gs_b,
  upar = gsDesign(
    k = length(target_events),
    test.type = 1,
    n.I = target_events,
    maxn.IPlan = max(target_events),
    sfu = sfLDOF,
    sfupar = NULL
  )$upper$bound,
  lower = gs_b,
  lpar = c(qnorm(.1), rep(-Inf, 2))
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> [1] 30 40 50
#> 
#> $input$analysis_time
#> [1] 10 24 30
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> [1] 2.668630 2.288719 2.030702
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (par = NULL, k = NULL, ...) 
#> {
#>     if (is.null(k)) {
#>         return(par)
#>     }
#>     else {
#>         return(par[k])
#>     }
#> }
#> <bytecode: 0x563f666ad068>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> [1] -1.281552      -Inf      -Inf
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 4 × 7
#>   analysis bound probability probability0     z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl> <dbl>          <dbl>       <dbl>
#> 1        1 upper      0.0172      0.00381  2.67          0.546     0.00381
#> 2        1 lower      0.0335      0.100   -1.28          1.34      0.9    
#> 3        2 upper      0.622       0.0141   2.29          0.747     0.0110 
#> 4        3 upper      0.842       0.0263   2.03          0.789     0.0211 
#> 
#> $analysis
#>   analysis time        n     event       ahr     theta     info    info0
#> 1        1   10 416.6667  77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2        2   24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3        3   30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#>   info_frac info_frac0
#> 1 0.2222803  0.2185712
#> 2 0.8413760  0.8361677
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }
# Example 4 ----
# spending bounds and calculate the power for targeted number of events
# \donttest{
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = target_events,
  analysis_time = NULL,
  upper = gs_spending_bound,
  upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
  lower = gs_spending_bound,
  lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> [1] 30 40 50
#> 
#> $input$analysis_time
#> NULL
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$upar$total_spend
#> [1] 0.025
#> 
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$lpar$total_spend
#> [1] 0.2
#> 
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 6 × 7
#>   analysis bound probability probability0      z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl>  <dbl>          <dbl>       <dbl>
#> 1        1 upper     0.00110     0.000865  3.13           0.319    0.000865
#> 2        1 lower     0.0569      0.0655   -1.51           1.74     0.935   
#> 3        2 upper     0.0115      0.00767   2.44           0.463    0.00739 
#> 4        2 lower     0.127       0.159    -1.06           1.40     0.857   
#> 5        3 upper     0.0427      0.0250    2.00           0.568    0.0226  
#> 6        3 lower     0.200       0.266    -0.738          1.23     0.770   
#> 
#> $analysis
#>   analysis     time        n    event       ahr      theta     info    info0
#> 1        1 5.893949 245.5812 29.99999 0.9636346 0.03704308 3.683799 3.684201
#> 2        2 6.900922 287.5384 40.00003 0.9373448 0.06470405 5.749119 5.750793
#> 3        3 7.808453 325.3522 50.00000 0.9155821 0.08819527 8.132495 8.136743
#>   info_frac info_frac0
#> 1 0.4529728  0.4527857
#> 2 0.7069318  0.7067685
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }
# Example 5 ----
# spending bounds and calculate the power for targeted analysis time
# \donttest{
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = NULL,
  analysis_time = target_analysisTime,
  upper = gs_spending_bound,
  upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
  lower = gs_spending_bound,
  lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> NULL
#> 
#> $input$analysis_time
#> [1] 10 24 30
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$upar$total_spend
#> [1] 0.025
#> 
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$lpar$total_spend
#> [1] 0.2
#> 
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 6 × 7
#>   analysis bound probability probability0     z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl> <dbl>          <dbl>       <dbl>
#> 1        1 upper   0.0000207   0.00000163  4.65          0.348  0.00000163
#> 2        1 lower   0.00659     0.0269     -1.93          1.55   0.973     
#> 3        2 upper   0.663       0.0142      2.19          0.756  0.0142    
#> 4        2 lower   0.162       0.947       1.62          0.814  0.0527    
#> 5        3 upper   0.811       0.0225      2.04          0.789  0.0209    
#> 6        3 lower   0.200       0.980       2.13          0.780  0.0165    
#> 
#> $analysis
#>   analysis time        n     event       ahr     theta     info    info0
#> 1        1   10 416.6667  77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2        2   24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3        3   30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#>   info_frac info_frac0
#> 1 0.2222803  0.2185712
#> 2 0.8413760  0.8361677
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }
# Example 6 ----
# spending bounds and calculate the power for targeted analysis time & number of events
# \donttest{
gs_power_wlr(
  enroll_rate = enroll_rate,
  fail_rate = fail_rate,
  event = target_events,
  analysis_time = target_analysisTime,
  upper = gs_spending_bound,
  upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
  lower = gs_spending_bound,
  lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)
#> $input
#> $input$enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $input$fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $input$event
#> [1] 30 40 50
#> 
#> $input$analysis_time
#> [1] 10 24 30
#> 
#> $input$binding
#> [1] FALSE
#> 
#> $input$ratio
#> [1] 1
#> 
#> $input$upper
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$upar
#> $input$upar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$upar$total_spend
#> [1] 0.025
#> 
#> 
#> $input$test_upper
#> [1] TRUE
#> 
#> $input$lower
#> function (k = 1, par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, 
#>     param = NULL, timing = NULL, max_info = NULL), hgm1 = NULL, 
#>     theta = 0.1, info = 1:3, efficacy = TRUE, test_bound = TRUE, 
#>     r = 18, tol = 1e-06) 
#> {
#>     if (length(test_bound) == 1 && k > 1) {
#>         test_bound <- rep(test_bound, k)
#>     }
#>     if (!is.null(par$timing)) {
#>         timing <- par$timing
#>     }
#>     else {
#>         if (is.null(par$max_info)) {
#>             timing <- info/max(info)
#>         }
#>         else {
#>             timing <- info/par$max_info
#>         }
#>     }
#>     spend <- par$sf(alpha = par$total_spend, t = timing, param = par$param)$spend
#>     old_spend <- 0
#>     for (i in 1:k) {
#>         if (test_bound[i]) {
#>             xx <- spend[i] - old_spend
#>             old_spend <- spend[i]
#>             spend[i] <- xx
#>         }
#>         else {
#>             spend[i] <- 0
#>         }
#>     }
#>     spend <- spend[k]
#>     if (!efficacy) {
#>         if (spend <= 0) {
#>             return(-Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         a <- qnorm(spend) + sqrt(info[k]) * theta[k]
#>         if (k == 1) {
#>             return(a)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         adelta <- 1
#>         j <- 0
#>         while (abs(adelta) > tol) {
#>             hg <- hupdate(theta = theta[k], info = info[k], a = -Inf, 
#>                 b = a, thetam1 = theta[k - 1], im1 = info[k - 
#>                   1], gm1 = hgm1, r = r)
#>             i <- length(hg$h)
#>             pik <- sum(hg$h)
#>             adelta <- spend - pik
#>             dplo <- hg$h[i]/hg$w[i]
#>             if (adelta > dplo) {
#>                 adelta <- 1
#>             }
#>             else if (adelta < -dplo) {
#>                 adelta <- -1
#>             }
#>             else {
#>                 adelta <- adelta/dplo
#>             }
#>             a <- a + adelta
#>             if (a > extreme_high) {
#>                 a <- extreme_high
#>             }
#>             else if (a < extreme_low) {
#>                 a <- extreme_low
#>             }
#>             if (abs(adelta) < tol) {
#>                 return(a)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#>     else {
#>         if (spend <= 0) {
#>             return(Inf)
#>         }
#>         if (length(theta) == 1) 
#>             theta <- rep(theta, length(info))
#>         b <- qnorm(spend, lower.tail = FALSE)
#>         if (k == 1) {
#>             return(b)
#>         }
#>         mu <- theta[k] * sqrt(info[k])
#>         extreme_low <- mu - 3 - 4 * log(r)
#>         extreme_high <- mu + 3 + 4 * log(r)
#>         bdelta <- 1
#>         j <- 1
#>         while (abs(bdelta) > tol) {
#>             hg <- hupdate(theta = 0, info = info[k], a = b, b = Inf, 
#>                 thetam1 = 0, im1 = info[k - 1], gm1 = hgm1, r = r)
#>             pik <- sum(hg$h)
#>             bdelta <- spend - pik
#>             dpikdb <- hg$h[1]/hg$w[1]
#>             if (bdelta > dpikdb) {
#>                 bdelta <- 1
#>             }
#>             else if (bdelta < -dpikdb) {
#>                 bdelta <- -1
#>             }
#>             else {
#>                 bdelta <- bdelta/dpikdb
#>             }
#>             b <- b - bdelta
#>             if (b > extreme_high) {
#>                 b <- extreme_high
#>             }
#>             else if (b < extreme_low) {
#>                 b <- extreme_low
#>             }
#>             if (abs(bdelta) < tol) {
#>                 return(b)
#>             }
#>             j <- j + 1
#>             if (j > 20) {
#>                 stop(paste("gs_spending_bound(): bound_update did not converge for lower bound calculation, analysis", 
#>                   k, " !"))
#>             }
#>         }
#>     }
#> }
#> <bytecode: 0x563f666b1ed8>
#> <environment: namespace:gsDesign2>
#> 
#> $input$lpar
#> $input$lpar$sf
#> function (alpha, t, param = NULL) 
#> {
#>     checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))
#>     checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))
#>     if (is.null(param) || param < 0.005 || param > 20) 
#>         param <- 1
#>     checkScalar(param, "numeric", c(0.005, 20), c(TRUE, TRUE))
#>     t[t > 1] <- 1
#>     if (param == 1) {
#>         rho <- 1
#>         txt <- "Lan-DeMets O'Brien-Fleming approximation"
#>         parname <- "none"
#>     }
#>     else {
#>         rho <- param
#>         txt <- "Generalized Lan-DeMets O'Brien-Fleming"
#>         parname <- "rho"
#>     }
#>     z <- -qnorm(alpha/2)
#>     x <- list(name = txt, param = param, parname = parname, sf = sfLDOF, 
#>         spend = 2 * (1 - pnorm(z/t^(rho/2))), bound = NULL, prob = NULL)
#>     class(x) <- "spendfn"
#>     x
#> }
#> <bytecode: 0x563f63ede910>
#> <environment: namespace:gsDesign>
#> 
#> $input$lpar$total_spend
#> [1] 0.2
#> 
#> 
#> $input$test_lower
#> [1] TRUE
#> 
#> $input$weight
#> function (x, arm0, arm1, rho = 0, gamma = 0, tau = NULL) 
#> {
#>     n <- arm0$size + arm1$size
#>     p1 <- arm1$size/n
#>     p0 <- 1 - p1
#>     if (!is.null(tau)) {
#>         if (tau > 0) {
#>             x <- pmin(x, tau)
#>         }
#>     }
#>     esurv <- p0 * npsurvSS::psurv(x, arm0) + p1 * npsurvSS::psurv(x, 
#>         arm1)
#>     (1 - esurv)^rho * esurv^gamma
#> }
#> <bytecode: 0x563f66845720>
#> <environment: namespace:gsDesign2>
#> 
#> $input$info_scale
#> [1] "h0_h1_info"
#> 
#> $input$approx
#> [1] "asymptotic"
#> 
#> $input$r
#> [1] 18
#> 
#> $input$tol
#> [1] 1e-06
#> 
#> 
#> $enroll_rate
#> # A tibble: 1 × 3
#>   stratum duration  rate
#>   <chr>      <dbl> <dbl>
#> 1 All           12  41.7
#> 
#> $fail_rate
#> # A tibble: 2 × 5
#>   stratum duration fail_rate dropout_rate    hr
#>   <chr>      <dbl>     <dbl>        <dbl> <dbl>
#> 1 All            4    0.0462        0.001   1  
#> 2 All          100    0.0462        0.001   0.6
#> 
#> $bounds
#> # A tibble: 6 × 7
#>   analysis bound probability probability0     z `~hr at bound` `nominal p`
#>      <int> <chr>       <dbl>        <dbl> <dbl>          <dbl>       <dbl>
#> 1        1 upper   0.0000207   0.00000163  4.65          0.348  0.00000163
#> 2        1 lower   0.00659     0.0269     -1.93          1.55   0.973     
#> 3        2 upper   0.663       0.0142      2.19          0.756  0.0142    
#> 4        2 lower   0.162       0.947       1.62          0.814  0.0527    
#> 5        3 upper   0.811       0.0225      2.04          0.789  0.0209    
#> 6        3 lower   0.200       0.980       2.13          0.780  0.0165    
#> 
#> $analysis
#>   analysis time        n     event       ahr     theta     info    info0
#> 1        1   10 416.6667  77.80361 0.8720599 0.1368971 16.20843 16.22923
#> 2        2   24 500.0000 246.28341 0.7164215 0.3334865 61.35217 62.08666
#> 3        3   30 500.0000 293.69568 0.6955693 0.3630247 72.91885 74.25144
#>   info_frac info_frac0
#> 1 0.2222803  0.2185712
#> 2 0.8413760  0.8361677
#> 3 1.0000000  1.0000000
#> 
#> attr(,"class")
#> [1] "non_binding" "wlr"         "gs_design"   "list"       
# }