Lower and Upper Bound of Group Sequential Design
Arguments
- alpha
a numeric vector of cumulative allocated alpha in each interim analysis
- beta
a numeric vector of cumulative allocated beta in each interim analysis
- theta
a numeric vector of effect size under alternative.
- corr
a matrix of correlation matrix
- analysis
a numeric vector of interim analysis indicator. Default is 1:length(alpha).
- theta0
a numeric vector of effect size under null hypothesis. Default is 0.
- binding_lower_bound
a logical value to indicate binding lower bound.
- algorithm
an object of class
GenzBretz
,Miwa
orTVPACK
specifying both the algorithm to be used as well as the associated hyper parameters.- alpha_bound
logical value to indicate if alpha is Type I error or upper bound. Default is FALSE.
- beta_bound
logical value to indicate if beta is Type II error or lower bound. Default is FALSE.
- ...
additional parameters transfer to
mvtnorm::pmvnorm
Examples
library(gsDesign)
#> Loading required package: ggplot2
x <- gsDesign::gsSurv( k = 3 , test.type = 4 , alpha = 0.025 ,
beta = 0.2 , astar = 0 , timing = c( 1 ) ,
sfu = sfLDOF , sfupar = c( 0 ) , sfl = sfLDOF ,
sflpar = c( 0 ) , lambdaC = c( 0.1 ) ,
hr = 0.6 , hr0 = 1 , eta = 0.01 ,
gamma = c( 10 ) ,
R = c( 12 ) , S = NULL ,
T = 36 , minfup = 24 , ratio = 1 )
cbind(x$lower$bound, x$upper$bound)
#> [,1] [,2]
#> [1,] -0.2361874 3.710303
#> [2,] 1.1703638 2.511407
#> [3,] 1.9929702 1.992970
gsdmvn:::gs_bound(alpha = sfLDOF(0.025, 1:3/3)$spend,
beta = sfLDOF(0.2, 1:3/3)$spend,
analysis = 1:3,
theta = x$theta[2] * sqrt(x$n.I),
corr = outer(1:3, 1:3, function(x,y) pmin(x,y) / pmax(x,y)))
#> upper lower
#> 1 3.710295 -0.2361879
#> 2 2.513755 1.1335603
#> 3 2.023170 2.0231696