Group sequential design power under non-proportional hazards
Source:R/gs_power_nph.r
gs_power_nph.Rd
Group sequential design power under non-proportional hazards
Usage
gs_power_nph(
enrollRates = tibble::tibble(Stratum = "All", duration = c(2, 2, 10), rate = c(3, 6,
9)),
failRates = tibble::tibble(Stratum = "All", duration = c(3, 100), failRate =
log(2)/c(9, 18), hr = c(0.9, 0.6), dropoutRate = rep(0.001, 2)),
ratio = 1,
events = c(30, 40, 50),
analysisTimes = NULL,
maxEvents = 45,
upper = gs_b,
upar = gsDesign(k = length(events), test.type = 1, n.I = events, maxn.IPlan =
maxEvents, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lower = gs_b,
lpar = c(qnorm(0.1), rep(-Inf, 2)),
r = 18
)
Arguments
- enrollRates
enrollment rates
- failRates
failure and dropout rates
- ratio
Experimental:Control randomization ratio (not yet implemented)
- events
Targeted events at each analysis
- analysisTimes
Not yet implemented
- maxEvents
Final planned events
- upper
Function to compute upper bound
- upar
Parameter passed to
upper()
- lower
Function to compute lower bound
- lpar
Parameter passed to
lower()
- r
Control for grid size; normally leave at default of
r=18
Examples
library(gsDesign)
library(gsDesign2)
library(dplyr)
gs_power_nph() %>% filter(abs(Z) < Inf)
#> # A tibble: 4 × 10
#> Analysis Bound Z Probability Time Events AHR theta info info0
#> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 Upper 2.51 0.0316 14.9 30.0 0.787 0.240 7.37 7.50
#> 2 2 Upper 2.15 0.113 19.2 40.0 0.744 0.295 9.79 10.0
#> 3 3 Upper 2.12 0.192 24.5 50.0 0.713 0.339 12.2 12.5
#> 4 1 Lower -1.28 0.0266 14.9 30.0 0.787 0.240 7.37 7.50