Format AE specific analysis
Usage
format_ae_specific(
outdata,
display = c("n", "prop", "total"),
digits_prop = 1,
digits_ci = 1,
digits_p = 3,
digits_dur = c(1, 1),
digits_events = c(1, 1),
filter_method = c("percent", "count"),
filter_criteria = 0,
sort_order = c("alphabetical", "count_des", "count_asc"),
sort_column = NULL,
mock = FALSE
)
Arguments
- outdata
An
outdata
object created byprepare_ae_specific()
.- display
A character vector of measurement to be displayed:
n
: Number of subjects with adverse event.prop
: Proportion of subjects with adverse event.total
: Total columns.diff
: Risk difference.diff_ci
: 95% confidence interval of risk difference using M&N method.diff_p
: p-value of risk difference using M&N method.dur
: Average of adverse event duration.events_avg
: Average number of adverse event per subject.events_count
: Count number of adverse event per subject.
- digits_prop
A numeric value of number of digits for proportion value.
- digits_ci
A numeric value of number of digits for confidence interval.
- digits_p
A numeric value of number of digits for p-value.
- digits_dur
A numeric value of number of digits for average duration of adverse event.
- digits_events
A numeric value of number of digits for average of number of adverse events per subject.
- filter_method
A character value to specify how to filter rows:
count
: Filtered based on participant count.percent
: Filtered based percent incidence.
- filter_criteria
A numeric value to display rows where at least one therapy group has a percent incidence or participant count greater than or equal to the specified value. If
filter_method
ispercent
, the value should be between 0 and 100. Iffilter_method
iscount
, the value should be greater than 0.- sort_order
A character value to specify sorting order:
alphabetical
: Sort by alphabetical order.count_des
: Sort by count in descending order.count_asc
: Sort by count in ascending order.
- sort_column
A character value of
group
inoutdata
used to sort a table with.- mock
A boolean value to display mock table.
Examples
meta <- meta_ae_example()
outdata <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
)
# Basic example
tbl <- outdata |>
format_ae_specific()
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 n_4 prop_4
#> 1 <NA> 254 <NA>
#> 2 (83.3) 187 (73.6)
#> 3 (16.7) 67 (26.4)
#> 4 <NA> NA <NA>
#> 122 (4.8) 17 (6.7)
#> 25 (2.4) 3 (1.2)
# Filtering
tbl <- outdata |>
format_ae_specific(
filter_method = "percent",
filter_criteria = 10
)
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2
#> 1 Participants in population 86 <NA> 84 <NA>
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9)
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1)
#> 4 NA <NA> NA <NA>
#> 126 Gastrointestinal disorders 4 (4.7) 8 (9.5)
#> 127 General disorders and administration site conditions 18 (20.9) 43 (51.2)
#> n_3 prop_3 n_4 prop_4
#> 1 84 <NA> 254 <NA>
#> 2 70 (83.3) 187 (73.6)
#> 3 14 (16.7) 67 (26.4)
#> 4 NA <NA> NA <NA>
#> 126 10 (11.9) 22 (8.7)
#> 127 35 (41.7) 96 (37.8)
# Display different measurements
tbl <- outdata |>
extend_ae_specific_events() |>
format_ae_specific(display = c("n", "prop", "events_count"))
head(tbl$tbl)
#> name n_1 prop_1 eventscount_1 n_2
#> 1 Participants in population 86 <NA> NA 84
#> 2 with one or more drug-related adverse events 44 (51.2) 133 73
#> 3 with no drug-related adverse events 42 (48.8) NA 11
#> 4 NA <NA> NA NA
#> 122 Cardiac disorders 6 (7.0) 14 7
#> 25 Atrial fibrillation 1 (1.2) 1 0
#> prop_2 eventscount_2 n_3 prop_3 eventscount_3
#> 1 <NA> NA 84 <NA> NA
#> 2 (86.9) 292 70 (83.3) 279
#> 3 (13.1) NA 14 (16.7) NA
#> 4 <NA> NA NA <NA> NA
#> 122 (8.3) 13 4 (4.8) 5
#> 25 (0.0) 0 2 (2.4) 3