Format AE summary analysis
Usage
format_ae_summary(
outdata,
display = c("n", "prop", "total"),
digits_prop = 1,
digits_ci = 1,
digits_p = 3,
digits_dur = c(1, 1),
digits_events = c(1, 1),
filter_method = c("percent", "count"),
filter_criteria = 0,
sort_order = c("alphabetical", "count_des", "count_asc"),
sort_column = NULL,
mock = FALSE
)
Arguments
- outdata
An
outdata
object created byprepare_ae_specific()
.- display
A character vector of measurement to be displayed:
n
: Number of subjects with adverse event.prop
: Proportion of subjects with adverse event.total
: Total columns.diff
: Risk difference.diff_ci
: 95% confidence interval of risk difference using M&N method.diff_p
: p-value of risk difference using M&N method.dur
: Average of adverse event duration.events_avg
: Average number of adverse event per subject.events_count
: Count number of adverse event per subject.
- digits_prop
A numeric value of number of digits for proportion value.
- digits_ci
A numeric value of number of digits for confidence interval.
- digits_p
A numeric value of number of digits for p-value.
- digits_dur
A numeric value of number of digits for average duration of adverse event.
- digits_events
A numeric value of number of digits for average of number of adverse events per subject.
- filter_method
A character value to specify how to filter rows:
count
: Filtered based on participant count.percent
: Filtered based percent incidence.
- filter_criteria
A numeric value to display rows where at least one therapy group has a percent incidence or participant count greater than or equal to the specified value. If
filter_method
ispercent
, the value should be between 0 and 100. Iffilter_method
iscount
, the value should be greater than 0.- sort_order
A character value to specify sorting order:
alphabetical
: Sort by alphabetical order.count_des
: Sort by count in descending order.count_asc
: Sort by count in ascending order.
- sort_column
A character value of
group
inoutdata
used to sort a table with.- mock
A boolean value to display mock table.
Examples
meta <- meta_ae_example()
outdata <- prepare_ae_summary(meta,
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
)
#> any
#> rel
#> ser
tbl <- outdata |>
format_ae_summary()
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3 prop_3 n_4
#> 1 Participants in population 86 <NA> 84 <NA> 84 <NA> 254
#> 2 with one or more adverse events 69 (80.2) 77 (91.7) 79 (94.0) 225
#> 3 with no adverse events 17 (19.8) 7 (8.3) 5 (6.0) 29
#> 21 with drug-related{^a} adverse events 44 (51.2) 73 (86.9) 70 (83.3) 187
#> 22 with serious adverse events 0 (0.0) 1 (1.2) 2 (2.4) 3
#> prop_4
#> 1 <NA>
#> 2 (88.6)
#> 3 (11.4)
#> 21 (73.6)
#> 22 (1.2)