Axial Dispersion open-open¶
- 
class 
rtdpy.ad_oo.AD_oo(tau, peclet, dt, time_end)[source]¶ Bases:
rtdpy.rtd.RTDCreate Axial Dispersion with open-open boundary conditions Residence Time Distribution (RTD) model. [1]
\[\begin{split}E(t) = \frac{\sqrt{Pe}}{\tau\sqrt{4\pi\theta}} \text{exp}\left[\frac{-Pe \left(1-\theta\right)^2} {4\theta}\right]\\ \theta = t/\tau\end{split}\]- Parameters
 - tauscalar
 L/U, not the mean residence time, see tau_oo.
tau>0- pecletscalar
 Reactor Peclet number (L*U/D).
peclet>0- dtscalar
 Time step for RTD.
dt>0- time_endscalar
 End time for RTD.
time_end>0
Notes
The mean residence time for an open-open system is not tau. Mean residence time is \(\tau_{oo} = (1+2/Pe)*\tau\).
References
- 1
 Levenspiel O., Smith W.K. (1957) Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. “Chemical Engineering Science”, 6, 227-233
Examples
>>> import matplotlib.pyplot as plt >>> import rtdpy >>> for pe in [10, 100]: ... a = rtdpy.AD_oo(tau=1, peclet=pe, dt=.01, time_end=3) ... plt.plot(a.time, a.exitage, label=f"peclet={pe}") >>> plt.xlabel('Time') >>> plt.ylabel('Exit Age Function') >>> plt.legend() >>> plt.show()
- 
property 
dt¶ Time step for RTD
- 
property 
exitage¶ Exit age distribution for RTD
- 
property 
exitage_norm¶ Normalized Exit Age Distribtion for RTD
- 
frequencyresponse(omegas)¶ - Parameters
 - omegasndarray
 frequencies at which to evaluate magnitude response
- Returns
 - magnitudendarray
 frequency magnitude response at omegas
- 
funnelplot(times, disturbances)¶ Return maximum output signal due to square disturbances.
Uses method from [Garcia] . Also returns meshgrid for times and disturbance inputs for ease of plotting.
- Parameters
 - timesarray_like, size m
 Times to determine funnelplot
- disturbancesarray_like, size n
 Disturbance magnitudes
- Returns
 - x2D meshgrid size (mxn)
 times
- y2D meshgrid size (mxn)
 disturbances
- response2D meshgrid size (mxn)
 maximum response at (x,y)
References
- Garcia
 Garcia-Munoz S., Butterbaugh A., Leavesley I., Manley L.F., Slade D., Bermingham S. (2018) A flowhseet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective. “AIChE Journal”, 64(2), 511-525.
- 
integral()¶ Integral of RTD.
- 
mrt()¶ Mean residence time of RTD.
- 
output(inputtime, inputsignal)¶ Convolves input signal with RTD
- Parameters
 - inputtimendarray
 Times of input signal, which must have same dt as RTD. Size m
- inputsignalndarray
 Input signal. Size n
- Returns
 - outputsignalndarrary
 Output signal at same dt. Size m + n -1
- 
property 
peclet¶ Peclet number.
- 
sigma()¶ Variance of RTD.
- 
property 
stepresponse¶ Step respose of RTD
- 
property 
stepresponse_norm¶ Normalized step respose of RTD
- 
property 
tau¶ Tau.
- 
property 
tau_oo¶ Mean Residence Time for open-open system. Not tau for open-open.
- 
property 
theta¶ Dimensionless time.
- 
property 
time¶ Time points for exitage function.
- 
property 
time_end¶ Last time point for RTD