Zusatz¶
-
class
rtdpy.zusatz.
Zusatz
(b, c, dt, time_end)[source]¶ Bases:
rtdpy.rtd.RTD
Create Zusatz Residence Time Distribution (RTD) model. [1] Parameter a is chosen such that the integral is 1.
\[\begin{split}E(t) = a t^{-c-1} b^{c+1} \text{exp}\left[\left(b^c t^{-c} -1\right)\frac{-c-1}{c}\right] \\a = \frac{1+c}{b\, \text{exp}\left[1+1/c\right]}\end{split}\]- Parameters
- bscalar
b Zusatz parameter.
b>0
- cscalar
c Zusatz parameter.
c>0
Mean residence time only defined forc>1
. Variance only defined forc>2
.- dtscalar
Time step for RTD.
dt>0
- time_endscalar
End time for RTD.
time_end>0
References
- 1
Poulesquen A., et al. (2003) A study of residence time distribution in co-rotating twin-screw extruders. Part II: Experimental validation. “Polymer Engineering and Science”, 43(12), 1849-1862.
Examples
>>> import matplotlib.pyplot as plt >>> import rtdpy >>> for c in [3, 7]: >>> a = rtdpy.Zusatz(b=25, c=c, dt=.01, time_end=100) >>> plt.plot(a.time, a.exitage, label=f"c={c}") >>> plt.xlabel('Time') >>> plt.ylabel('Exit Age Function') >>> plt.legend() >>> plt.show()
-
property
a
¶ a parameter that normalizes RTD to 1
-
property
b
¶ b parameter
-
property
c
¶ c parameter
-
property
dt
¶ Time step for RTD
-
property
exitage
¶ Exit age distribution for RTD
-
property
exitage_norm
¶ Normalized Exit Age Distribtion for RTD
-
frequencyresponse
(omegas)¶ - Parameters
- omegasndarray
frequencies at which to evaluate magnitude response
- Returns
- magnitudendarray
frequency magnitude response at omegas
-
funnelplot
(times, disturbances)¶ Return maximum output signal due to square disturbances.
Uses method from [Garcia] . Also returns meshgrid for times and disturbance inputs for ease of plotting.
- Parameters
- timesarray_like, size m
Times to determine funnelplot
- disturbancesarray_like, size n
Disturbance magnitudes
- Returns
- x2D meshgrid size (mxn)
times
- y2D meshgrid size (mxn)
disturbances
- response2D meshgrid size (mxn)
maximum response at (x,y)
References
- Garcia
Garcia-Munoz S., Butterbaugh A., Leavesley I., Manley L.F., Slade D., Bermingham S. (2018) A flowhseet model for the development of a continuous process for pharmaceutical tablets: An industrial perspective. “AIChE Journal”, 64(2), 511-525.
-
integral
()¶ Integral of RTD.
-
mrt
()¶ Mean residence time of RTD.
-
output
(inputtime, inputsignal)¶ Convolves input signal with RTD
- Parameters
- inputtimendarray
Times of input signal, which must have same dt as RTD. Size m
- inputsignalndarray
Input signal. Size n
- Returns
- outputsignalndarrary
Output signal at same dt. Size m + n -1
-
sigma
()¶ Variance of RTD.
-
property
stepresponse
¶ Step respose of RTD
-
property
stepresponse_norm
¶ Normalized step respose of RTD
-
property
time
¶ Time points for exitage function.
-
property
time_end
¶ Last time point for RTD