Add inference information for AE specific analysis
Source:R/extend_ae_specific.R
extend_ae_specific_inference.Rd
Add inference information for AE specific analysis
Arguments
- outdata
An
outdata
object created byprepare_ae_specific()
.- ...
Other options passed on to
rate_compare_sum()
- ci
A numeric value for the percentile of confidence interval.
Examples
meta <- meta_ae_example()
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_inference() |>
format_ae_specific(display = c("n", "prop", "diff", "diff_ci"))
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 diff_2 ci_2 diff_3 ci_3
#> 1 <NA> <NA> (-4.4, 0.0) <NA> (-4.4, 0.0)
#> 2 (83.3) 35.7 (22.4, 48.0) 32.2 (18.4, 44.8)
#> 3 (16.7) -35.7 (-48.0, -22.4) -32.2 (-44.8, -18.4)
#> 4 <NA> <NA> <NA> <NA> <NA>
#> 122 (4.8) 1.4 (-7.3, 10.2) -2.2 (-10.3, 5.6)
#> 25 (2.4) -1.2 (-6.3, 3.3) 1.2 (-4.2, 7.3)
# use other options passed on to [metalite.ae::rate_compare_sum()]
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_inference(eps = 1e-6, bisection = 200) |>
format_ae_specific(display = c("n", "prop", "diff", "diff_ci"))
head(tbl$tbl)
#> name n_1 prop_1 n_2 prop_2 n_3
#> 1 Participants in population 86 <NA> 84 <NA> 84
#> 2 with one or more drug-related adverse events 44 (51.2) 73 (86.9) 70
#> 3 with no drug-related adverse events 42 (48.8) 11 (13.1) 14
#> 4 NA <NA> NA <NA> NA
#> 122 Cardiac disorders 6 (7.0) 7 (8.3) 4
#> 25 Atrial fibrillation 1 (1.2) 0 (0.0) 2
#> prop_3 diff_2 ci_2 diff_3 ci_3
#> 1 <NA> <NA> (-4.4, -0.0) <NA> (-4.4, -0.0)
#> 2 (83.3) 35.7 (22.4, 48.0) 32.2 (18.4, 44.8)
#> 3 (16.7) -35.7 (-48.0, -22.4) -32.2 (-44.8, -18.4)
#> 4 <NA> <NA> <NA> <NA> <NA>
#> 122 (4.8) 1.4 (-7.3, 10.2) -2.2 (-10.3, 5.6)
#> 25 (2.4) -1.2 (-6.3, 3.3) 1.2 (-4.2, 7.3)