Source code for rtdpy.ad_hi_peclet
"""Axial Dispersion high peclet number assumption."""
import numpy as np
from rtdpy.rtd import RTD, RTDInputError
[docs]class AD_hi_peclet(RTD):
"""
Create Axial Dispersion with small amount of Dispersion (Pe>100)
Residence Time Distribution (RTD) model. [1]_
.. math::
E(t) = \\frac{\\sqrt{Pe}}{2\\tau\\sqrt{\\pi}}
\\text{exp}\\left[-\\frac{Pe \\left(1-t/\\tau\\right)^2}
{4}\\right]
Parameters
----------
tau : scalar
L/U. Mean residence time.
``tau>0``
peclet : scalar
Reactor Peclet number (L*U/D).
``peclet>0``
dt : scalar
Time step for RTD.
``dt>0``
time_end : scalar
End time for RTD.
``time_end>0``
References
----------
.. [1] Levenspiel O. (1999) "Chemical Reaction Engineering: Third Edition"
John Wiley & Sons, Inc.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> import rtdpy
>>> for pe in [100, 1000]:
... a = rtdpy.AD_hi_peclet(tau=1, peclet=pe, dt=.01, time_end=3)
... plt.plot(a.time, a.exitage, label=f"peclet={pe}")
>>> plt.xlabel('Time')
>>> plt.ylabel('Exit Age Function')
>>> plt.legend()
>>> plt.show()
"""
def __init__(self, tau, peclet, dt, time_end):
super().__init__(dt, time_end)
if tau <= 0:
raise RTDInputError('tau less than zero')
self._tau = tau
if peclet <= 0:
raise RTDInputError('peclet less than zero')
self._peclet = peclet
self._exitage = self._calc_exitage()
def _calc_exitage(self):
"""Calculate exitage."""
theta_safe = np.clip(self.theta, np.finfo(float).eps, None)
output = 1 / self.tau \
/ np.sqrt(4. * np.pi / self.peclet) \
* np.exp(-(1. - theta_safe) ** 2
/ (4. / self.peclet))
return output
@property
def theta(self):
"""Dimensionless Time."""
return self.time / self.tau
@property
def peclet(self):
"""Peclet Number"""
return self._peclet
@property
def tau(self):
"""Mean residence time, Tau."""
return self._tau
def __repr__(self):
"""Representation of object"""
return ("AD_hi_peclet(tau={}, peclet={}, dt={}, time_end={})".format(
self.tau, self.peclet, self.dt, self.time_end))