Utility function for root-finding to compute inflation factor xi with the separate alpha spending approach
Source:R/find_xi.R
find_xi.Rd
Utility function for root-finding to compute inflation factor xi with the separate alpha spending approach
Arguments
- a
Sum of cumulative alpha spending from the Bonferroni approach.
- alpha_prev
alpha boundary at previous interim analyses using the MTP approach.
- aprime
Nominal alpha boundary from the Bonferroni approach.
- xi
Inflation factor.
- sig
Correlation matrix of previous and current analyses test statistics.
- maxpts
GenzBretz function maximum number of function values as integer.
- abseps
GenzBretz function absolute error tolerance.
- ...
Additional arguments.
Examples
# Input event count of intersection of paired hypotheses - Table 2
my_event <- tibble::tribble(
~H1, ~H2, ~Analysis, ~Event,
1, 1, 1, 155,
2, 2, 1, 160,
3, 3, 1, 165,
1, 2, 1, 85,
1, 3, 1, 85,
2, 3, 1, 85,
1, 1, 2, 305,
2, 2, 2, 320,
3, 3, 2, 335,
1, 2, 2, 170,
1, 3, 2, 170,
2, 3, 2, 170
)
# Generate correlation from events
my_corr <- generate_corr(my_event)
# Find the inflation factor for H1, H2 at analysis 1
find_xi(
a = 0.0008708433,
alpha_prev = NULL,
aprime = c(0.0004588644, 0.0004119789),
xi = 1,
sig = my_corr[
colnames(my_corr) %in% c("H1_A1", "H2_A1"),
colnames(my_corr) %in% c("H1_A1", "H2_A1")
]
)
#> [1] -2.237679e-05
#> attr(,"error")
#> [1] 1e-15
#> attr(,"msg")
#> [1] "Normal Completion"